codility 4-2. Perm Check
07 May 2017 | 알고리즘 프로그래밍문제
A non-empty zero-indexed array A consisting of N integers is given.
A permutation is a sequence containing each element from 1 to N once, and only once.
For example, array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
A[3] = 2
is a permutation, but array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
is not a permutation, because value 2 is missing.
The goal is to check whether array A is a permutation.
Write a function:
def solution(A)
that, given a zero-indexed array A, returns 1 if array A is a permutation and 0 if it is not.
For example, given array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
A[3] = 2
the function should return 1.
Given array A such that:
A[0] = 4
A[1] = 1
A[2] = 3
the function should return 0.
Assume that:
N is an integer within the range [1..100,000];
each element of array A is an integer within the range [1..1,000,000,000].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(N), beyond input storage
(not counting the storage required for input arguments).
풀이코드
풀이코드 1
- Detected time complexity: O(N) or O(N * log(N))
def solution(A):
M = max(A)
B = list(set(A))
if len(B) == M and len(A) == len(B) and sum(range(M+1)) == sum(B):
return 1
return 0
풀이코드 2
- Detected time complexity: O(N^2)
- 문제점 : A = [1000000000] 와 같은 인자가 주어지면, sum(range(max(A)+1)) 부분에서 많은 시간이 소요된다.
def solution(A):
B = list(set(A))
if len(A) == len(B) and sum(range(max(A)+1)) == sum(B):
return 1
return 0
풀이코드 3
- Detected time complexity: O(N^2)
def solution(A):
if len(A) == max(A):
for idx, var in enumerate(A): # O(N)
if var in A[idx+1:]: # O(N^2)
return 0
return 1
return 0
다른사람 풀이
- 비트단위 연산을 활용하였다.
- bitwise 연산자를 공부하자
def solution(A):
N = len(A)
xorSum = 0
for i in range(1, N+1):
xorSum ^= i ^ A[i-1]
if xorSum == 0:
return 1
else:
return 0
- or 연산자 활용
def solution(A):
if max(A) != len(A) or len(set(A)) != len(A):
return 0
return 1